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We report computer simulations and high-temperature approximations of the 
pair correlation in a stationary nonequilibrium system, a lattice gas subject to a 
strong uniform driving field E. The dynamics of the system is given by hoppings 
of particles to adjacent empty sites with rates biased for jumps in the direction 
of E. We study the anisotropic short-distance behavior as well as the long-dis- 
tance decay properties of the two-point correlations along the principal axes. 
The simulations as well as the (approximate) expansion in /3 strongly suggest 
that the correlations in this system have a power law decay, r -D for dimensions 
D = 2 and 3, even at high temperatures. 

KEY WORDS:  Nonequilibrium stationary states; stochastic lattice gas; high- 
temperature approximations; pair correlations; power law decay. 

1. I N T R O D U C T I O N  

This paper is a continuation of our studies ~1-5) of the properties of 
stationary nonequilibrium states of a lattice gas subject to a strong external 
field E. We consider a hypercubic lattice in D dimensions, D = 2 or 3, with 
periodic boundary conditions containing N = Lll x L~ 1 sites and pN par- 
ticles. The microscopic configuration of the system is specified by giving the 
occupation at all lattice sites, _q = {~/x }, with ~/x = 0, 1 corresponding to site 
x being empty or occupied (Zx qx = pN). The configurations evolve in time 
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according to a particle-conserving stochastic hopping dynamics (see ref. 1, 
for instance). 

In the absence of the external field, this is the familiar kinetic lattice 
gas or Ising model with Kawasaki dynamics, (6) which leads to an 
equilibrium state for each p, specified by 

exp[ - flH(r/)] 
Peq(r/) 

Z~ exp[ -- flff(_t/) ] 
(1) 

where fl = 1/kB T. The interaction energy H(_t/) is assumed to involve only 
nearest neighbor sites, 

H(r/) = - 4 J  ~ rlxtly (2) 
Ix Yl - 1 

with J >  0. For p = 1/2, the (infinite) system undergoes a phase transition 
at the critical temperatures To "~ 2.27J/kB and To ~- 4.55J/k, for D = 2 and 
D = 3, respectively. 

The field E induces a preferential hopping in the field direction, 
leading, for periodic boundary conditions in the direction of the field, to a 
nonequilibrium steady state with a net current. The bias is most naturally 
induced in a way which satisfies local detailed balance (1) by adding to the 
energy difference AH the work done by the field during a jump. This yields, 
using the Monte Carlo prescription of Metropolis et al., (v) the rates for an 
exchange of the occupations at sites x and x + e in the configuration _t/as 

f l ,  if AH--(tlx--rlx+e) e.E<~O (3) 
c(x 'x  + e ; q - ) = ( e x p { - f l [ A H - ( t l x - t l x + e ) e . E ] } ,  otherwise 

Here e is a unit vector in the lattice and A H =  H(~ xy) - H(q), where q_xy is 
the configuration obtained from r /by  interchanging spins at x and y. 

The stationary state generated by this dynamics cannot (in general) be 
described by a formula of type (1) for any "reasonable" Hamiltonian. 
Previous computer simulation studies indicated that the interesting new 
features of the stationary state get more pronounced as the field strength 
increases. Therefore, we shall only study here the case of a strong field, 
E---, 0% which simply means that jumps in the field direction are always 
performed, while jumps in the opposite direction are forbidden. In Ising 
spin language, ax- -2qx-1 ,  exchanges in the field direction are described 
by the rate 

C[I(X , X .3f- e j . ,  ~ )  = 1(1~ x - -  r Wel ~- 2 )  ( 4 )  

where el is a unit vector in the positive field direction, ax=  __1. The 
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exchange rate in the direction perpendicular to the field is given by the 
Metropolis rate, (7) 

c l ( x , x+e2 ,  a)=min(1, e ~ H )  (5) 

We are mostly interested in the two-point correlation function, defined 
by G(x)= (aOax). In the following section we present a high-temperature 
approximation of G(x). This analysis explains some of the findings 
described in later sections in computer simulations. In particular, it 
strongly suggests [and for a slightly modified model, replacing (4) by 1/2, 
proves] that the correlations decay like /3r -D at high temperatures. We 
argue that a slow decay of correlations is a general feature of systems with 
conservative dynamics where relaxation of a density fluctuation has to 
decay via diffusion--equal-time correlations in equilibrium systems being 
the exception. This is consistent with hydrodynamic fluctuation theory and 
with experiments for real fluids. (8) 

2. H I G H - T E M P E R A T U R E  A P P R O X I M A T I O N  

It is known that for/3 = 0 the stationary state of our system is identical 
to that of the equilibrium system, E = 0,/3 = 0, i.e., all configurations of the 
particles have equal probability. ~ To obtain results at /3r we have to 
use directly the dynamics which govern the evolution of the system. To do 
so, let S be a set of sites, as = lqx~s ax, it is then easy to see that the (as )  
satisfy (BBGKY-type) coupled equations of the form 

d(as )  ~ ,  
d-----~- ( a s ( ~ x a Y - 1 ) c ( x ' Y ' ~ ) )  (6) 

(x,y) 

where the sum Z '  is over nearest neighbor sites x and y such that x ~ S, 
y r S, and we are considering for simplicity an infinite system, so there are 
no boundary conditions or constraints. The stationary correlations are 
obtained by setting the lhs of (6) equal to zero. We can then expand 
c•  in power of /3 [cll(x,y,~_ ) being independent of fl], 
c• y, q) = 1 +/3c2(x, y, g) + 0(/32), to obtain a corresponding expansion 
for the correlations, where c2(x, y, g ) =  - ( A H +  IAH])/2 for the rates (5). 

Before writing down this expansion, we note that the system possesses 
various symmetry properties. First of all it is translational invariance. 
Second, it follows from the transition rate (3) that the system is invariant 
under simultaneous reversal of the field E and spins ax .(1) So we have for 
the case ( a x ) =  0 (p = 1/2) which we shall consider here that 

( a s ) e = ( - - 1 )  Isl (a s )  E (7) 

where IS] is the cardinality of the set S. Finally, let R1, R2 be the reflection 
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operations R l ( i , j ) = ( - i , j ) ,  Rz(i , j )=(i  , - j ) ,  where (i,j) denotes the 
coordinates in 2D, the first coordinate corresponding to the field direction. 
Then we have 

(o-s>E= <O'R~s~>-E (8) 

<as )E  = (O'R2(s))E (9) 

where RI(S), R2(S) is a collection of sites obtained from S by the reflection 
operations. Equation (8) simply says that if we reverse the field and also 
reflect the sites S in a line perpendicular to the field, then the correlations 
remain unchanged since the physical situations are exactly the same. 
Equation (9) has a similar origin. Combining Eqs. (7) (9), we have the 
result that 

<O'S>E = (-- 1) Isl (O'R~(S)>e = (-- 1) Isl (O'R,R2(S)>E (10) 

where R1R2 is the inversion operation [R1Rz(i,j)= ( - i ,  - j ) ] .  
Keeping these properties in mind, we now derive equations for the 

stationary pair correlation functions to first order in ft. Let us consider 
explicitly Eq. (6) for S =  (a, b) (see Fig. 1). The contribution from ell to the 
rhs of (6) is then 

(o-b(o.c - o.a) ell(a, e, if)> + (o.b(o.g- aa) Cll(g, a, q)> 

+ (o.a(o.a-- erb) Cll(b, d, g)> + (au(o-f-  o.b) cll(f, b, g)> 

= 1E<o-~o.c> + <o-b%> + <o.ao-d> + <O'ao',~> 

- 4<o-~o.b > + 2(o..  > - 2(o.b > 

+ <O'ao'bo'~> -- <o'ao'e%> + <~oo'bo'd> -- <o'ao'b%'>] 

=2[G(1 ,  1 ) -  G(0, 1 )+  (o.ao.bo.c>] (11) 

where we have set (o.xo.y>=G(x-y),  and have used the symmetry 
relations. 

Next we consider contributions from the perpendicular direction. Since 
c2(x, y, g) is even in the o.'s, these terms will consist of correlations only 
containing an even number of spins. Since the even correlations have left- 
right (perpendicular to the field) and up-down (field direction) symmetry, 
the contributions from (a, h) and (b, e) are the same. The total contribution 
is therefore equal to 

2<o.b(o'h- o'a) c z(h, a, if)> 

= 2<o-b(O" h - -  o - a ) [  1 -k fic2(h, a, g) + O(f12)] > 

= 2{G(o, 2 ) -  G(0, l) 

+fl[(o.bo.hc2(h,a,q)>--(O~o.bC2(h,a,g)>]}+O(fl 2) (12) 



Stationary Nonequilibrium Lattice Gases 

g f 

1465 

h 9 
a b 

" e  

c d 

Fig. 1. A configuration used in deriving the high-temperature expansion. 

Combining Eqs. (1l) and (12), we get 

G(0, 2 )+  G(1, 1) -2G(0,  1)+ ( a ~ b a c )  

+flE(abcrbc2(h,a,a))--(a~abc2(h,a,g))]+O(fl2)=O (13) 

To zeroth order in fl all the terms on the left side of Eq. (13) vanish. To 
obtain G to first order in fl, the terms in the brackets should be evaluated 
to zeroth order. We then have that (CraCrbc2(x, y, y))  is the coefficient of 
O'aO" b in the polynomial expansion of c• y, _a) in the a's: remembering 
that to zeroth order (Ors) = 0  unless S is the empty set. Note that due to 
the conservative nature of the dynamics the one-body correlation does not 
enter the equations explicitly (even in the case when ( a x ) ~ 0 ) .  It enters 
implicitly as a condition that (~xay) ~ ( a x ) ( ~ y )  as Ix-Yl  ~ ~ .  

Carrying out more such computations, we are led to the following 
equations, accurate to order fl: 

G(1, 0) = �89 G(2, 0) + 4G(1, 1)] (14) 

G(0, 1)= l [ f ld+ G(0, 2 )+  G(1, 1)+ (a(o.o~a(o,l)a(1.o))] (15) 

G(2, 0)=~[G(1, 0 )+  G(3, 0)+4G(2, 1)+ (~r(o,o/r(2,o)ao.o))] (16) 

G(0, 2) = 1[ _ f l j +  a(o, 1) + 6(0, 3) + a(1, 2) 

"F (0"(0,0) 0"(0, 2) 0"(1,0) ) ] (17) 

G(1, 1 ) = -~[ - 2flJ + 2G(1, 0) + G(0, 1 ) + G(2, 1 ) + 2G(1, 2) 

"~ (0"(0,0)0"(1,1)0"(2,1)) --  (0"(0,0)0"(1,1)0"(0,1)> ] (18) 

822/52/5-6-22 
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and for i+ j>2 ,  

G(i,j)=~[G(i+ 1, j )+G(i-  1, j)+ 2G(i,j+ 1)+ 2G(i,j- 1) 

"~- (ff(O,O)(7(i,j)ff(i+ l , j ) ) -  (ff(O,O)G(i,j)ff(i 1,j))-I (19) 

2.1.  S h o r t - D i s t a n c e  R e s u l t s  

Equations (14) (19) form the "first" set of equations in an infinite 
BBGKY hierarchy to first order in/L To make progress, it seems necessary 
to invoke some approximation scheme which will close the set. There are 
many ways of doing this. In the present case it seems reasonable to neglect 
the three-spin correlations, hoping that they will be small to this order, 
remembering that in the equilibrium state all odd correlations would 
vanish. Simulation results also indicate that these correlations are small, 

The two-body correlations now form a closed set of equations, which 
we solve numerically by iterations after truncation to i + j = 60. The results 
of G(x)/flJ are presented in Table I. An entirely similar analysis in D = 3 
yields results given in Table III. Comparison with results of Monte Carlo 
simulations at high temperatures, shown in Tables II  and III,  are quite 
good. 

2.2.  P o w e r  L a w  D e c a y  

For  large distances the difference equation (19) can be approximated 
by an anisotropic Laplace equation, 

( 8~2~+ ~2~G(x, y)=O (20) 
\zox- cy-/ 

Table I. High-Temperature Approximation of the Pair Correlation 
G(i, j)/13J in 2D, where i is the Direction of the Field 

0 1 2 3 4 5 6 

0 0.35979 -0.28183 
1 0.84376 0.00141 ~3.06362 
2 0.21317 0.08840 0.02202 
3 0.08165 0.05861 0.03170 
4 0.04232 0.03654 0.02594 
5 0.02612 0.02414 
6 0.01782 

~).14165 -0.08076 -0.05115 
~).06237 -0.04948 ~.03758 
-0.00638 ~.01623 
0.01250 

q3.03511 
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Table I1. Monte  Carlo Results of the Pair Correlation in 2D of a Size 
14x  300 at Various Temperatures and High-Temperature Approximat ion 

~ ~ 22.0 6.0 3.0 2.0 1.6 1.4 

TG~(1 ) 0.8438 0.837 0.822 0.824 0.830 0.857 0.909 
TGt(2) 0.2132 0.229 0.299 0.337 0.429 0.511 0.610 
TGt(3 ) 0.0817 0.091 0.116 0.186 0.257 0.355 0.459 
TGt(4) 0.0423 0.049 0.083 0.123 0.176 0.265 0.372 
TGt(5) 0.0261 0.028 0.047 0.072 0.098 0.214 0.322 
TGt(6) 0.0178 0.018 0.050 0.057 0.098 0.182 0.282 
TGt(7) 0.0130 0.015 0.049 0.037 0.078 0.149 0.252 

TGt(1) 0.3598 0.345 0.365 0.358 0.379 0.436 0.497 
TGr(2) -0.2818 -0.270 -0.248 -0.246 -0.208 -0.141 -0.063 
TGt(3) -0.1417 -0.137 -0.140 -0.155 -0.175 -0.167 -0.142 
TGt(4) -0.0808 -0.072 -0.063 -0.085 -0.121 -0.134 -0.152 
TG,(5) -0.0512 -0.054 -0.039 -0.048 -0.082 -0.104 -0.142 
TG,(6) -0.0351 -0.028 -0.034 -0.039 -0.056 -0.088 -0.130 
TGt(7) -0.0256 -0.020 -0.030 -0.030 -0.052 -0.078 -0.131 

Setting x ' =  21/2x, we obtain the standard Laplace equation. We look for a 
solution which decays to zero at large distances and is consistent with the 
symmetry of the problem. The required solution is, in 2D, 

G(x, y) cos[2 tan l(y/21/2x)] 2x 2_ y2 
/~------~-~ " 2x 2 + y2 - (2x 2 + y2)2 (21) 

Table III. Monte  Carlo Results of the Pair Correlation 
in 3D of a Size 1 6 x 1 6 x 2 5 6  at Various Temperatures 

and High-Temperature Approximat ion 

~ ~ 6.0 3.0 1.6 1.3 1.2 1.1 

TGt(1) 0.96763 0.977 0.979 1.000 1.024 1.043 1.079 
TGt(2) 0.14178 0.182 0.246 0.360 0.434 0.475 0.541 
TG~(3) 0.03226 0.021 0.081 0.161 0.227 0.264 0.331 
TG~(4) 0.01128 0.019 0.034 0.085 0.136 0.168 0.231 
TGt(5) 0.00527 0.004 0.014 0.050 0.089 0.115 0.174 

TGt(1 ) 0.66372 0.636 0.635 0.630 0.648 0.661 0.698 
TGt(2 ) -0.10001 -0.076 -0.071 -0.040 -0.010 0.005 0.050 
TGt(3) -0.03555 -0.038 -0.044 -0.050 -0.043 -0.043 -0.020 
TGr(4) -0.01504 0.001 -0.018 -0.023 -0.025 -0.028 -0.020 
TG,(5) -0.00741 -0.008 -0.010 -0.015 -0.015 -0.016 -0.019 
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The analogous power law decay for the pair correlation in three dimen- 
sions is fir -3. The asymptotic solutions "match on" to the numerical 
solutions at large distances. 

The striking feature of Eq. (21) is the power law decay it predicts for 
the pair correlation at high temperatures. This is to be contrasted with 
equilibrium behavior, e.g., when E = 0, where to lowest order in fi the pair 
correlation has the same range as the potential. The latter is equal to 
(possibly smaller than) the range of the transition rate c; one in the present 
case. The question now is whether the behavior given by (21) is the right 
one or is just the result of the approximation neglecting the three-spin 
correlations. We believe that the former is the case. Our belief is based on 
two similar models where it can be proven that this type of decay occurs: 
(1) Consider a model in which the right side of Eq. (4) is replaced by 1/2, 
i.e., exchanges in the + el direction are independent of the configuration g. 
For this model a symmetry relation analogous to (7) gives ( a s )  = 0 for IS[ 
odd whenever ( a x ) =  0. Hence, in this case the three-spin correlations on 
the right side of Eqs. (14)-(19) are zero and the asymptotic behavior (21) is 
exact. (2) There is a model, solved exactly by Spohn, (1~ in which the jump 
rates are isotropic and independent of a. The system is confined to a strip 
of length L perpendicular to el and there is a current in the e I direction 
imposed by boundary conditions of fixed unequal densities Po and PL at the 
sides. Spohn finds that the pair correlaton in the direction perpendicular to 
el, where the system is infinite, decays asymptotically like the inverse of the 
Laplacian, e.g., [ ( P o - P c ) / L ]  2r 1 in 3D. Finally, we note that this type of 
behavior occurs in real fluids subject to a temperature gradient. (8) 

The origin of the slow decays in all these nonequilibrium systems is to 
be found in the conservative nature of the dynamics. As is well known, (9) 
the spectrum of the time evolution of these systems has no gap; any 
deviation from uniform density has to decay via diffusion as t o/2. This 
naturally translates into spatial decays like r -D. What happens, however, 
in equilibrium is that the power law terms have vanishing coefficients. 
Thus, it is the equal-time correlations in equilibrium that are special. In 
fact, the equilibrium time displaced correlations have, as is well known, 
"long-time tails." 

The behavior changes when the dynamics is nonconservative. Thus, if 
we add some Glauber flips to the exchanges, then we find, as expected, an 
exponential decay of the correlations at high temperatures with a decay 
length ~ ~ p-1/2 for small p, where p is the "percentage" of Glauber 
dynamics. We shall consider such models in a future publication. (1~) 
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3. C O M P U T E R  S I M U L A T I O N S  

The slow decay of the correlations at high temperatures complicates 
the study of this system via computer simulations. The "correlation length" 
defined in the usual way, e.g., via the second moment of the pair 
correlation function, will clearly diverge in the infinite system. This in turn 
makes finite-size effects, always a problem in simulations, even more severe. 
Also affected will be the study of the crossover from "high-temperature" to 
"critical" behavior, where the decay of the pair correlation is even 
slower. (12) Nevertheless, we believe that we have been able to extract some 
useful information from the computer studies, which we shall now describe. 

As an extension to the 2D studies (3) on squares, we carried out 
simulations for cubes with L = 10, 20, 32. Since the correlation functions 
are highly anisotropic and field-theoretic methods u2) predict that the 
longitudinal correlation length should diverge about twice as fast as the 
transverse one as T--* To, we have also investigated rectangular systems 
with sizes 25x50,  50x 100, 100x200, and 14x300 in 2D as well as 
parallelopipeds with sizes 4 x 4 x 16, 8 x 8 x 64, and 16 x 16 x 256 in 3D. 
The last system was studied on a CDC Cyber-205 vector machine and 
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Fig. 2. Nearest neighbor correlations multiplied by ( [] ) T, Tu t and (O) Tu t vs. T in 2D. The 
values correspond to a system of size 100 x 100. The horizontal lines are the asymptotic value 
from high-temperature expansion. 
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many new vectorized Monte Carlo techniques were applied (a fast multi- 
spin coding algorithm and other technical aspects will be published 
elsewhere; see also ref. 13). 

Our primary computer simulation data are for the pair correlations 
along the principal lattice directions. We write G/r) [ = G ( r ,  0) or 
G(r, O, 0)]  for the longitudinal correlation function and G,(r) [ = G(O, r) or 
G(0, r, 0 ) = G ( 0 ,  0, r ) ]  for the transverse one. We also denote Gt(1) and 
Gt(1) by u~ and ut, respectively. In the following, temperatures are 
measured in units of To, the (equilibrium) critical temperatures when E =  0 
[see sentence following Eq. (2)]. 

3.1. Nearest Neighbor Correlations 

We begin with the study of the nearest neighbor correlations uz and ut, 
which characterize the short-distance behavior of the system. In particular, 
the current density in the field direction is j oc 1 -  ut and the average 
energy density is ut + ( D -  1) u, (up to constant coefficients). Figures 2 and 
3 contain plots of Tuz and Tu, versus T for D = 2 and 3. The horizontal 
lines are the asymptotic, approximate high-temperature values, which show 

Fig. 3. 
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good agreement with the computer simulation results. The nearest 
neighbor correlation data are also listed in Tables II and III. 

Figure 4 is a plot of ur for several system sizes in 3D. We see that, in 
general, ut and u, decrease monotonically as the temperature increases. As 
the system size increases, there an incipient break appears in the slope 
around T ~  1.33 in 2D and T ~  1.06 in 3D. We take these to be the critical 
temperatures of our system. (2) Except for the smallest size system (which 
obviously has serious finite-size effects), the correlations in the different 3D 
systems behave very much the same above that temperature; below it they 
branch out. This is very similar to what one obtains in the 2D case; see 
Fig. 3 in ref. 3. 

The shape size dependence of the short-distance correlations is com- 
plicated. For systems with LIt>>,L• the correlations increase as L• 
increases, but they decrease as Lti increases. Keeping the shape fixed, the 
correlations will be monotone increasing only if Ltl >> L• For the Lit = L• 
systems, there is always a region slightly above the transition temperature 
(in our 3D systems it is for 1.06< T <  1.2) in which the correlations 
actually decrease a little bit as the size is increased. All the complications 

Fig. 4. 
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are caused by the interplay among various length scales (Lll, L• ~H, and 
~ l )  and the global constraint of particle number conservation. A general 
finite-size scaling analysis for such systems will be given in ref. 11. 

3.2. Correlat ions in the Field Direct ion 

The correlations should have, according to our analysis in Section 2, a 
power law decay even at high temperature. According to field-theoretic 
predictions, (12) the correlation functions at Tc also behave as a power law 
but with different exponents: e.g., Gt(r) goes as r 1 at T =  Tc in 3D. We 
have therefore plotted log Gt(r) vs. log r for the 16 • 16 • 256 system in 
Fig. 5. At high temperatures we do observe r 3 behavior, as predicted from 
high-temperature approximation, as seen from the straight lines in the 
figure, which have a slope of - 3 .  The value of r beyond which this 

?- 
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03 = 
0 

m. 
7" 

0.2 0.4 0.6 0.8 1.0 1.2 Z.4 1,6 1,8 2.0 

Lo91r) 

Fig. 5. Plot of loglo Gt(r) vs. log10 r with 16 x 16 • 256 lattice system. The temperatures are: 
3.0, 1.6, 1.3, 1.2, 1.16, 1.1, 1.08, and 1.06 (from the left to the right). The shorter straight lines 
have a slope of - 3  and the long diagonal straight line has a slope of - 1 .  
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behavior is observed depends on temperature. We identify it with the 
correlation length ~lt(T), i.e., Gt(r)~ [r/~ll(T)]-3 for r > ~ll(T). As the tem- 
perature approaches Tc ~ 1.06, the correlation length ~ll(T) goes to infinity. 
The system has a phase transition at T c and for T <  Tc, Gt(r) does not go 
to zero. If we assume Gt(r )~r  -a at Tc, an estimate a =  1.0_+0.3 is 
obtained, as indicated by the straight line of slope - 1  in Fig. 5. This is 
consistent with the theoretical calculations. (12) 

To study the critical behavior of this "correlation length" ~lt(T), we 
have plotted log ~tl(T) versus log(T/To-  1) in Fig. 6. We obtain from the 
slope v t i=0 .84_0 .2 ,  which is smaller than the field-theoretic value 

rib =4/3.  
In 2D we studied the 14 x 300 system for a large set of temperatures 

above T c. This shape and size allow us to study the decay of Gz(r) over a 
longer distance, and also to reduce the finite-size effects. The longitudinal 
correlations never go to zero below T =  1.33, while they always decay to 
noise level at a distance smaller than Lit~2 above that temperature. This 
determines a value for the critical temperature Tc which agrees very well 
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Fig. 6. Plot of log10 (it(T) vs. loglo(T/T~-- 1) for 16 • 16 x 256 lattice system (for this system, 
we take To= 1.05). The correlation length (ll(T) has been estimated from Fig. 5 by noting 
where Gt(r ) starts showing 1/r 3 behavior. 
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with those values obtained from the order parameter  (3) and from the 
specific heat (3) in systems of comparable size. 

Figure 7 is a plot of log Gt(r) versus log r. We again find power law 
behavior, with the slopes at high temperatures consistent with an r -2 
decay, as predicted in Section 2. This also agrees with the 
phenomenological fit proposed in ref. 3, 

1 
Gl(r) (22) 

1 + (r/~il)2 

Note that the data do not really extend to very large distances where the 
influence of the noise is dominant. In Fig. 8 we have plotted f ( r ) =  
[ 1 / G t ( r ) -  1 ] 1/2 versus r for different temperatures. The slopes in this plot 
give us an estimate for 1/~ti(T), and from these values we can obtain the 
critical exponent vii. In Fig. 9 we have plotted log~t t (T ) versus 
l og (T IT  C -  1) and the negative slope gives us a value vii =0.7. This value is 
intermediate between the mean field one and the one for the two-dimen- 
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Fig. 9. Estimation of vii in 2D from the values of ~II(T) obtained from the inverse of slopes in 
Fig. 8. The reduced temperature e is defined by e = (T-- Tc)/Tc, To= 1.33. 
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sional Ising model in equilibrium, and agrees very well with the result 
obtained from the previous 2D finite-size scaling. (3) The data fit into the 
scaling form 

f (r )  = A( T) + br/~ll (23) 

for all distance, as can be seen in Fig. 10. 

3.3. Corre lat ions in the Transverse Direct ions 

At high temperatures G,(r) decays extremely fast and becomes 
negative for r > 1 at very high temperatures, as predicted by the analysis in 
Section 2; see Table II and III.  As one lowers the temperature, longer dis- 
tance correlations start to show up, but they are still barely above the noise 
level. Below To, the correlation length appears to reach the system size. A 
determination of the transverse correlation length is very difficult due to 
poor  numerical data. 
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Fig. 10. All the values in Fig. 8 plotted v s .  r/~LI(T) after substracting the y intercept, showing 
that they scale with slope one. 
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4. C O N C L U D I N G  R E M A R K S  

We have presented evidence of power law decay of the pair 
correlations at high temperatures for the driven stochastic lattice gas 
model. The evidence comes from both approximate high-temperature 
expansions and computer simulations in two and three dimensions. Such 
slow decay is also found experimentally for nonequilibrium systems. (8) It 
would certainly be desirable to carry out more rigorous and systematic 
studies to confirm our findings. 

The crossover from high-temperature behavior to critical behavior is 
then from one power law to another power law. The decay in 3D at T C is 
consistent with the field-theoretic prediction. The exponent vii, which may 
not be very accurate, is smaller than the field-theoretic value. On the other 
hand, the two-dimensional result for vii differs greatly from the field- 
theoretic value. More accurate information for these nonequilibrium 
systems with conservation laws and anisotropy requires even larger systems 
and longer runs. This is still a major challenge to present-day com- 
putational capabilities. 
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